Problem 4.58

An electron is in the spin state

$$
\chi=A\binom{1-2 i}{2}
$$

(a) Determine the constant A by normalizing χ.
(b) If you measured S_{z} on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_{z} ?
(c) If you measured S_{x} on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_{x} ?
(d) If you measured S_{y} on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_{y} ?

Solution

Part (a)

Determine A by requiring the spin state to be normalized.

$$
\chi=\left[\begin{array}{c}
A(1-2 i) \\
2 A
\end{array}\right] \Rightarrow|A(1-2 i)|^{2}+|2 A|^{2}=1 ~=1 ~ \begin{aligned}
A^{2}|1-2 i|^{2}+4 A^{2} & =1 \\
A^{2}(1-2 i)(1-2 i)^{*}+4 A^{2} & =1 \\
A^{2}(1-2 i)(1+2 i)+4 A^{2} & =1 \\
A^{2}(1+4)+4 A^{2} & =1 \\
9 A^{2} & =1 \\
A^{2} & =\frac{1}{9} \\
A & = \pm \frac{1}{3}
\end{aligned}
$$

Either sign works. Choose the plus sign.

$$
A=\frac{1}{3}
$$

Therefore, the normalized spin state is

$$
\chi=\frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right] .
$$

Part (b)

The matrix representing the z-component of the spin angular momentum S_{z} is

$$
\mathrm{S}_{z}=\frac{\hbar}{2}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
\frac{\hbar}{2} & 0 \\
0 & -\frac{\hbar}{2}
\end{array}\right]
$$

Determine its eigenvalues.

$$
\begin{gathered}
\operatorname{det}\left(\mathrm{S}_{z}-\lambda \mathbf{I}\right)=0 \\
\left|\begin{array}{cc}
\frac{\hbar}{2}-\lambda & 0 \\
0 & -\frac{\hbar}{2}-\lambda
\end{array}\right|=0 \\
\left(\frac{\hbar}{2}-\lambda\right)\left(-\frac{\hbar}{2}-\lambda\right)-(0)(0)=0 \\
\left(\lambda-\frac{\hbar}{2}\right)\left(\lambda+\frac{\hbar}{2}\right)=0 \\
\lambda= \pm \frac{\hbar}{2}
\end{gathered}
$$

These are the possible values that can be obtained by measuring S_{z}. Now let

$$
\lambda_{-}=-\frac{\hbar}{2} \quad \text { and } \quad \lambda_{+}=+\frac{\hbar}{2},
$$

and determine the corresponding eigenvectors (or rather eigenspinors in this context).

$$
\begin{array}{rrr}
\left(\mathrm{S}_{z}-\lambda_{-} \mathrm{I}\right) \chi_{-}=0 & \left(\mathrm{~S}_{z}-\lambda_{+} \mathrm{I}\right) \chi_{+}=0 \\
{\left[\begin{array}{cc}
\frac{\hbar}{2}+\frac{\hbar}{2} & 0 \\
0 & -\frac{\hbar}{2}+\frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & {\left[\begin{array}{cc}
\frac{\hbar}{2}-\frac{\hbar}{2} & 0 \\
0 & -\frac{\hbar}{2}-\frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
\hbar & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & {\left[\begin{array}{rr}
0 & 0 \\
0 & -\hbar
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\hbar x_{1}=0 & -\hbar x_{2}=0 \\
x_{1}=0 & x_{2}=0 \\
\chi_{+}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]
\end{array}
$$

Choose x_{1} and x_{2} so that the eigenspinors are normalized.

$$
\chi_{-}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \chi_{+}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The probability of measuring $-\hbar / 2$ for the component of spin angular momentum along the z-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{-}\right\rangle$.

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right) & =\left|c_{-}\right|^{2} \\
& =|\langle\chi-\mid \chi\rangle|^{2} \\
& =\left|\chi_{-}^{\dagger} \chi\right|^{2} \\
& =\left|\left[\begin{array}{c}
0 \\
1
\end{array}\right]^{\dagger} \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{9}\left|\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{9}|0(1-2 i)+1(2)|^{2} \\
& =\frac{4}{9}
\end{aligned}
$$

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the z-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}\right|^{2} \\
& =\left|\left\langle\chi_{+} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{\dagger} \chi\right|^{2} \\
& =\left|\left[\begin{array}{c}
1 \\
0
\end{array}\right] \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{9}\left|\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{9}|1(1-2 i)+0(2)|^{2} \\
& =\frac{1}{9}\left[1^{2}+(-2)^{2}\right] \\
& =\frac{5}{9}
\end{aligned}
$$

The expectation value of S_{z} is

$$
\left\langle S_{z}\right\rangle=P\left(\lambda_{-}\right) \lambda_{-}+P\left(\lambda_{+}\right) \lambda_{+}=\frac{4}{9}\left(-\frac{\hbar}{2}\right)+\frac{5}{9}\left(\frac{\hbar}{2}\right)=\frac{\hbar}{18} .
$$

Part (c)
The matrix representing the x-component of the spin angular momentum S_{x} is

$$
\mathrm{S}_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right] .
$$

Determine its eigenvalues.

$$
\begin{gathered}
\operatorname{det}\left(\mathrm{S}_{x}-\lambda \mathrm{I}\right)=0 \\
\left|\begin{array}{cc}
0-\lambda & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0-\lambda
\end{array}\right|=0 \\
(0-\lambda)^{2}-\left(\frac{\hbar}{2}\right)\left(\frac{\hbar}{2}\right)=0 \\
\lambda^{2}-\frac{\hbar^{2}}{4}=0 \\
\lambda= \pm \frac{\hbar}{2}
\end{gathered}
$$

These are the possible values that can be obtained by measuring S_{x}. Now let

$$
\lambda_{-}=-\frac{\hbar}{2} \quad \text { and } \quad \lambda_{+}=+\frac{\hbar}{2}
$$

and determine the corresponding eigenvectors (or rather eigenspinors in this context).

$$
\left.\left.\left.\begin{array}{rlrl}
\left(\mathrm{S}_{x}-\lambda_{-} \mathrm{I}\right) \chi_{-}^{(x)}=0 & \left(\mathrm{~S}_{x}-\lambda_{+} \mathrm{I}\right) \chi_{+}^{(x)} & =0 \\
{\left[\begin{array}{cc}
\frac{\hbar}{2} & \frac{\hbar}{2} \\
\frac{\hbar}{2} & \frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & {\left[\begin{array}{rr}
-\frac{\hbar}{2} & \frac{\hbar}{2} \\
\frac{\hbar}{2} & -\frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\frac{\hbar}{2} x_{1}+\frac{\hbar}{2} x_{2} & =0 \\
\frac{\hbar}{2} x_{1}+\frac{\hbar}{2} x_{2} & =0
\end{array}\right\} \quad \begin{array}{rl}
-\frac{\hbar}{2} x_{1}+\frac{\hbar}{2} x_{2} & =0 \\
x_{1}+x_{2} & =0 \\
x_{1}+x_{2} & =0
\end{array}\right\} \quad \frac{\hbar}{2} x_{1}-\frac{\hbar}{2} x_{2}=0\right\}
$$

Solve for x_{2}.

$$
\begin{array}{rr}
x_{2}=-x_{1} & x_{2}=x_{1} \\
\chi_{-}^{(x)}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
-x_{1}
\end{array}\right] & \chi_{+}^{(x)}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{1}
\end{array}\right]
\end{array}
$$

Choose x_{1} so that each eigenspinor is normalized.

$$
\begin{aligned}
& \left|x_{1}\right|^{2}+\left|-x_{1}\right|^{2}=1 \\
& x_{1}^{2}+x_{1}^{2}=1 \\
& 2 x_{1}^{2}=1 \\
& x_{1}^{2}=\frac{1}{2} \\
& \left|x_{1}\right|^{2}+\left|x_{1}\right|^{2}=1 \\
& x_{1}^{2}+x_{1}^{2}=1 \\
& 2 x_{1}^{2}=1 \\
& x_{1}=\frac{1}{\sqrt{2}} \\
& x_{1}^{2}=\frac{1}{2} \\
& \chi_{-}^{(x)}=\left[\begin{array}{r}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& \chi_{+}^{(x)}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

The probability of measuring $-\hbar / 2$ for the component of spin angular momentum along the x-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{-}^{(x)}\right\rangle$.

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right) & =\left|c_{-}^{(x)}\right|^{2} \\
& =\left|\left\langle\chi_{-}^{(x)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{-}^{(x) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]^{\dagger} \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18} \left\lvert\,\left[\left.\begin{array}{ll}
1 & -1]
\end{array}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2}\right.\right. \\
& =\frac{1}{18}|1(1-2 i)+(-1)(2)|^{2} \\
& =\frac{1}{18}|-1-2 i|^{2}
\end{aligned}
$$

Simplify the result.

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right) & =\frac{1}{18}\left[(-1)^{2}+(-2)^{2}\right] \\
& =\frac{5}{18}
\end{aligned}
$$

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the x-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}^{(x)}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}^{(x)}\right|^{2} \\
& =\left|\left\langle\chi_{+}^{(x)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{(x) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
1
\end{array}\right]^{\dagger} \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18} \left\lvert\,\left[\left.\begin{array}{ll}
1 & 1]
\end{array}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2}\right.\right. \\
& =\frac{1}{18}|1(1-2 i)+1(2)|^{2} \\
& =\frac{1}{18}|3-2 i|^{2} \\
& =\frac{1}{18}\left[3^{2}+(-2)^{2}\right] \\
& =\frac{13}{18}
\end{aligned}
$$

The expectation value of S_{x} is

$$
\left\langle S_{x}\right\rangle=P\left(\lambda_{-}\right) \lambda_{-}+P\left(\lambda_{+}\right) \lambda_{+}=\frac{5}{18}\left(-\frac{\hbar}{2}\right)+\frac{13}{18}\left(\frac{\hbar}{2}\right)=\frac{2 \hbar}{9} .
$$

Part (d)

The matrix representing the y-component of the spin angular momentum S_{y} is

$$
\mathrm{S}_{y}=\frac{\hbar}{2}\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & 0
\end{array}\right] .
$$

Determine its eigenvalues.

$$
\begin{gathered}
\operatorname{det}\left(\mathrm{S}_{y}-\lambda \mathrm{I}\right)=0 \\
\left|\begin{array}{cc}
0-\lambda & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & 0-\lambda
\end{array}\right|=0 \\
(0-\lambda)^{2}-\left(-\frac{i \hbar}{2}\right)\left(\frac{i \hbar}{2}\right)=0 \\
\lambda^{2}-\frac{\hbar^{2}}{4}=0 \\
\lambda= \pm \frac{\hbar}{2}
\end{gathered}
$$

These are the possible values that can be obtained by measuring S_{y}. Now let

$$
\lambda_{-}=-\frac{\hbar}{2} \quad \text { and } \quad \lambda_{+}=+\frac{\hbar}{2}
$$

and determine the corresponding eigenvectors (or rather eigenspinors in this context).

$$
\begin{aligned}
& \left(\mathbf{S}_{y}-\lambda_{-} \mathbf{I}\right) \chi_{-}^{(y)}=0 \\
& \left(\mathrm{~S}_{y}-\lambda_{+} \mathrm{I}\right) \chi_{+}^{(y)}=0 \\
& {\left[\begin{array}{rr}
\frac{\hbar}{2} & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & \frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \left.\frac{\hbar}{2} x_{1}-\frac{i \hbar}{2} x_{2}=0\right\} \\
& \frac{i \hbar}{2} x_{1}+\frac{\hbar}{2} x_{2}=0 \text {) } \\
& \left.x_{1}-i x_{2}=0\right\} \\
& i x_{1}+x_{2}=0 \text {) } \\
& x_{2}=-i x_{1} \\
& \chi_{-}^{(y)}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
-i x_{1}
\end{array}\right] \\
& {\left[\begin{array}{rr}
-\frac{\hbar}{2} & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & -\frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& -\frac{\hbar}{2} x_{1}-\frac{i \hbar}{2} x_{2}=0 \\
& \left.\frac{i \hbar}{2} x_{1}-\frac{\hbar}{2} x_{2}=0\right\} \\
& \left.-x_{1}-i x_{2}=0\right\} \\
& \left.i x_{1}-x_{2}=0\right\} \\
& x_{2}=i x_{1} \\
& \chi_{+}^{(y)}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
i x_{1}
\end{array}\right]
\end{aligned}
$$

Choose x_{1} so that each eigenspinor is normalized.

$$
\begin{array}{cc}
\left|x_{1}\right|^{2}+\left|-i x_{1}\right|^{2}=1 & \left|x_{1}\right|^{2}+\left|i x_{1}\right|^{2}=1 \\
x_{1}^{2}+x_{1}^{2}=1 & x_{1}^{2}+x_{1}^{2}=1 \\
2 x_{1}^{2}=1 & \\
x_{1}^{2}=\frac{1}{2} & x_{1}^{2}=\frac{1}{2} \\
x_{1}=\frac{1}{\sqrt{2}} & x_{1}^{2}=\frac{1}{\sqrt{2}} \\
\chi_{-}^{(y)}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\left.-\frac{i}{\sqrt{2}}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-i
\end{array}\right]
\end{array} \quad \chi_{+}^{(y)}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]\right.
\end{array}
$$

The probability of measuring $-\hbar / 2$ for the component of spin angular momentum along the y-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{-}^{(y)}\right\rangle$.

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right) & =\left|c_{-}^{(y)}\right|^{2} \\
& =\left|\left\langle\chi_{-}^{(y)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{-}^{(y) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]^{\dagger} \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18}\left|\left[\begin{array}{cc}
1 & i
\end{array}\right]\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18}|1(1-2 i)+i(2)|^{2} \\
& =\frac{1}{18}|1|^{2} \\
& =\frac{1}{18}
\end{aligned}
$$

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the y-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}^{(y)}\right\rangle$.

$$
\begin{aligned}
& P\left(+\frac{\hbar}{2}\right)=\left|c_{+}^{(y)}\right|^{2} \\
& =\left|\left\langle\chi_{+}^{(y)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{(y) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]^{\dagger} \frac{1}{3}\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18}\left|\left[\begin{array}{ll}
1 & -i
\end{array}\right]\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]\right|^{2} \\
& =\frac{1}{18}|1(1-2 i)+(-i)(2)|^{2} \\
& =\frac{1}{18}|1-4 i|^{2} \\
& =\frac{1}{18}\left[1^{2}+(-4)^{2}\right] \\
& =\frac{17}{18}
\end{aligned}
$$

The expectation value of S_{y} is

$$
\left\langle S_{y}\right\rangle=P\left(\lambda_{-}\right) \lambda_{-}+P\left(\lambda_{+}\right) \lambda_{+}=\frac{1}{18}\left(-\frac{\hbar}{2}\right)+\frac{17}{18}\left(\frac{\hbar}{2}\right)=\frac{4 \hbar}{9} .
$$

